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A M O D E L  O F  M U L T I C O M P O N E N T  G R O U T I N G  A N D  

S U F F O S I O N  F I L T R A T I O N  

B. Khuzhaerov UDC 532.546 

A model of grouting and suffosion filtration of multicomponent systems is proposed. Adequate formulation 

of the problem and the existence of invariant and self-similar solutions are discussed. 

In the filtration of many disperse systems in a porous medium the pores are clogged by disperse particles, 

which change the filtration characteristics substantially. The main point in studying the filtration of disperse 

systems in a porous medium, including the effects of clogging (grouting) and emptying (suffosion) of the pores, is 

creation of mathematical models that reflect adequately the main characteristic features of the process. Investigation 

of filtration of these systems becomes much more complicated if the disperse phase of the fluid consists of several 

components whose grouting and suffosion characteristics are different in the same porous medium and under the 

same hydrodynamic conditions. 

A theoretical investigation of filtration of disperse systems with one component of the disperse phase was 

carried out in [1-6 ]. A theory of multicomponent filtration, including grouting and suffosion effects, has not been 

created so far. In the present study on the basis of model concepts used in [7 ] to create a kinetic model describing 

changes in the porosity induced by grouting and suffosion, a model of filtration of a multicomponent mixture with 

account for the difference in the dynamics of sedimentation in pores and escape of the components from the pores 

is proposed. In order to simplify the mathematics, only grouting and suffosion mechanisms are considered, 

neglecting other phenomena that change the characteristics of the effective capacity of the medium, such as 

adsorption of dynamically neutral (or active) particles on the surface of the solid skeleton of the medium, sorption 

of particles into porous grains composing the porous medium, and development of boundary layers of fluid on the 

surface of the porous material [8 ]. 

Similarly to [7 ], it is assumed that every pore is a trap for impurity particles and the porous medium is a 

continuum of traps and each of them can be either vacant or occupied. Pores clogged by impurity particles do not 

participate in the filtration process, and after they are emptied, the fluid again passes through them. It will be 

assumed that the particles of each component suspended in the inert phase (usually it is water in the case of 

filtration of drilling mud, contaminated water, etc.) have different grouting and suffosion activity. If the number 

of components is m, grouting and suffosion of the pores can be characterized by m pairs of parameters, namely, 

the probability of capture Pli and release P2i of at least one impurity particle of the i-th component by and from 

a pore per unit time. To a first approximation the probability of capture can be considered constant, while the 

probability of release is proportional to the pressure gradient of the liquid flow. The last statement means that 

release of captured particles from the pores is effected by the hydrodynamic pressure force, while their capture can 

also take place in the absence of dynamic forces. 

As in the case of a monodisperse system, a grouting and suffosion model of a multicomponent liquid flow 

can be constructed on the basis of a set of equations of material balance, equations describing the kinetics of clogging 

and emptying of pores, and Darcy's law. The material balance equation for particles suspended in a liquid is written 

a s  

On i Oa i 
0--7 + div (uni) + -~- = div (Dafl,i (u) grad hi) , i = 1 , m ,  (1) 
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where ni is the volumetric concentration of the i-th component in the liquid flow; a i is the volumetric concentration 

of captured particles of the i-th component; u is the velocity of the liquid flow; Dafl, i(u) is the tensor of convective 

diffusion coefficients of particles of the i-th component; the subscripts a and fl refer to the direction of the coordinate 

axes. 

In the grouting and suffosion process, the convective diffusion coefficient Dafl, i(u) has the same function 

as in the process of convective diffusion of impurities with or without consideration of sorption of particles when 

the impurity is assumed to be dynamically neutral. Some authors report that its magnitude near the entrance to 

the porous medium depends on both the flow velocity and the coordinates [9, 10 ]. For sufficiently long porous 

media the dependence of Dafl , i(u) on the coordinate can be neglected. As was shown in [11 ], in particular regions 

of the flow determined by the Reynolds number of the filtration flow, this function is directly proportional to the 

velocity u, and the proportionality factor for the longitudinal direction is usually an order of magnitude larger than 

that for the transverse direction. 

The equation of grouting kinetics will be taken in the following form: 

Oa i 
Ot -- r (tO -- at) rti -- ai 092i P '  P = [gradPl , i = 1 , m,  (2) 

where CO li, o92i are parameters characterizing the intensities of sedimentation and escaping of impurity particles of 

the i-th component (these parameters are determined in terms of Pl i  and P2i, respectively). 
Equation (2) is similar to the equation of the kinetics of porosity for filtration of a monodisperse liquid [7 ]. 

The first term in the right-hand side shows that the grouting process can continue up to full clogging of the pores, 

when the concentration a i reaches e0. Theoretically, only suffosion can proceed in this case. The second term 

determines the suffosion process. 
Since the porosity changes, Darcy's law is taken in the form 

v ( t ) = - K ( e ) g r a d p ;  (3) 

where v(t) is the filtration rate. 
The function K ( e )  can be taken in various forms. With the assumption of a constant viscosity of the fluidit 

can be taken that, K ( e )  = koe, k0 = const [7]. For a more general case the Karman-Coseny law [12] or other 

generalized relationships can be used. It should be noted that as mass transfer between the fluid and the porous 

medium continues, the rheological properties of the former change. This factor can result in a more complicated 

behavior of K ( e ) .  However, when emphasis is put on grouting effects, the latter will be neglected. 

The velocities of the liquid flow at different points in the medium can be different; meanwhile, the filtration 

rate can remain constant. This can be explained by changes in the porosity. Assuming that all the localized particles 

of the components cause clogging of the pores and as a consequence result in changes in the porosity, the local 

velocity of the flow can be written as 

U ~ 
v (0 = v (0 (4) 

m 

t o -  E ai 
i=1 

For physical reasons it is clear that 

m 

ai t0 ,  (5) 
i = 1  

where the equality sign can occur theoretically in limiting clogging of the pores by particles, when, according to 

(2), the grouting process is completed. 
For an incompressible liquid the equation of constancy of the total concentration of the components is 

written as 
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m 
n i = n  o , n o = c o n s t .  (6) 

i=1 

Relations (1 ) - (6 )  form a complete set of equations to determine ni, ai, e, v(t), u, and p. 
In the one-dimensional  case, Eq. (1) has the form 

On i 0 (urti) Oa i 0 ( Di (It) Orti ] (7) 
o--? + o-----T- + ot - ox  ~ ox  ) ' 

where Di(u) are the coefficients of longitudinal convective diffusion. 

We will consider an adequate formulation of the boundary conditions for Eq. (7) in a porous medium of 

finite length [0, l]. To this end, (7) is multiplied by x r, r >_ 0, and integrated between ( x - 6 )  and (x + 6), ~ >- 0: 

x+3 x+3 
0__ f (n i + a i )  x ~ d x +  f 
Ot x-3  x-~ 

x ~ o ~ ( t  x) d x = O  
O X  ~ ' 

On i 
~i (t ' X) = un i -  D i (u) Ox " 

(8) 

If 6 --, 0, the first integral in (8) tends to zero. From the second integral we obtain 

x+6 x+6 

r x x ~ i ( t ,  x) - r  f 
_ x - ~  

xr-1 ~i (t , X) dx = O . (9) 

It is easy to see that as 6 -~ 0 the integral in (9) tends to zero. Consequently, at r -- 0 and x = 0 

(10)  ~ i ( t ,  x) l_6 = 0  or [~i( t ,  0 ) ] = 0 ,  

where [ ] is the difference between the values of the function to the right and to the left of a point. Similarly, at 

r _> 0 and x = l we obtain from (9): 

l+5 = 0  or [~i(t ,  / ) 1 = 0 .  (11) lr  ~i ( t ,  x)  I t -~  

With (8), (10), and (11), we obtain adequate boundary conditions for (7): 

o v ( t )  n o = u n i ( t  O) - D i ( u  O) Oni ( t '  O) , ~ 
(12) 

On i ( t ,  l -- O) 

Ox 
= 0 ,  D i (u ( t ,  

n i ( t ,  l - 0 )  = n i ( t ,  l + 0 ) ,  

l + O)) = D i (u (t , - 0 ) )  = 0 ,  
(13) 

where 

uo j[ ] 
= v (t) ~0 - a i ( t ,  0) 

i=1 

and n o are specified initial concentrations of the components in the flow (before entry into the porous medium).  

At the asymptotic stage of the process t -~ oo, when the concentration gradients ni at the entrance to the 

porous medium tend to zero, we obtain from (12) 
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n i ( t ,  O) = n i e O -  ~ ,  a i ( t ,  0) . (14) 
i=1 

As can be seen from (12) and (14), the concentration hi(t ,  x)  at the point x = 0 undergoes a discontinuity, 

although according to (10) the material flow is continuous. It should be also noted that at x = 0 the boundary  

condition contains n i and a i simultaneously, because in grouting-suffosion filtration the particles in the flow are 

not hydrodynamical ly  neutral,  as is assumed in problems of convective diffusion or convective transfer,  where 

sorption is included or neglected. 

In formulating the problems it should be taken into account that the filtration flow can be simulated by 

specifying ei ther v(t)  or the pressure p at two points of a finite porous medium. 

At the asymptotic stage t - ,  co the process becomes quasi-equilibrium, when the condition Oai/Ot = 0 can 

be assumed in kinetic equations (2). Then,  steady-state values of a i are determined as 

0 
O) l i  E 0 /'/i 0 

(ai)st (~  x ) - - c o n s t  i =  1,  m .  = n i  = n i  , , ( 1 5 )  
0 

o91 i n  i + o 9 2 i P  

Let the filtration flow be simulated by specifying v(t) = vo = const. The  kinetic process of grouting and 

suffosion is assumed to be quasi-equilibrium. Then,  with (3) in the one-dimensional case, we obtain from (2): 

~ (eO -- ai) ni -- a iw2 i  v o / K  e 0 - ~ a i = O, i = 1 , m .  (16) 
i=1 

Equations (16) form a nonlinear algebraic set. Its solutions are assumed to be a i = f i ( n ) ,  where n = (hi, n2, 

�9 .. , nm) .  Then  with Di(u)  = 0 we have from (7): 

0 (hi + fi (n)) 0 (17) 
Ot + - ~ x  ( u n i ) = O '  i =  1 ,  m .  

Summing (7) over all i and considering (6), we obtain 

OR Ou m 
0--7 + nO-~x = O ' R =  ~ ,  f i  (n)  . (18 / 

i=1 

Equations (17) and (18) form a system of quasilinear equations. In (17) m - 1  equations are independent  

because relation (6) relates all m solutions n i. In matrix form the system is written as 

Ovk Ovk (19) 
A---~-~ + uE--~--~x = 0 ,  i ,  k = l ,  m ,  

where 

m - 1  

rtm = rt O -  ~_~ h i ;  V k --  
i=1 

n 1 

n 2  

r t m -  1 

u 
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a,, = 1 + I . -  I,m - "o  (Ij - & ) ;  
i=l 

a m  m =  a i m  = O ;  eik = O ,  eii = 1 ; 

n i 

j=! 

u j ~ l  ( f j i  - f j m ) "  f i i  = " f i k  - -  a m  i = g .= ' , On i On k 

Systems of equations (17)-(19)  coincide formally with the system of equations for sorption of 

multicomponent mixtures in a granular porous medium with an infinitely large mass-transfer coefficient within a 

porous grain [13-15 ]. However, this similarity is only superficial. Quasi-equilibrium conditions in sorption problems 

are determined completely by the sorption is isotherms. In the present grouting and suffosion model of filtration 

these conditions depend on hydrodynamic parameters of the flow. Moreover, without the assumption of dynamic 

neutrality in grouting filtration, the behavior of the process changes substantially. Nevertheless, the general 

analysis of system (17), (18) or (19) can be quite similar to that of the system of equations for sorption [13-15]. 

The eigenvalues/% i = 1, m, of the matrix A are determined from the equation 

det (A - /~E) = 0.  (20) 

Since a a m  = O, i = 1, m ,  and consequently, the rank of the matrix is m - l ,  for positive kti they can be 

ordered: 

0 =/z m<f lm_l  < "" </z2 <~1 , 

0 < 2 1  < t  2 < . . .  < / m - l ,  
(21) 

where 2i = U/~m-i, i = 1,  m - - 1 .  

Grouting of the pores by individual components necessitates satisfaction of conditions (21). In this case 

the system of equations (19) is called hyperbolic in the narrow meaning of the word [16 ]. 

In the general case system (i 7) and (18) should be solved numerically, but under certain conditions, when 

the characteristics of the problem are functions of the variable, invariant solutions of the type of running waves 

z = x - w t ,  (22) 

or similarity solutions of the type of divergent waves 

= x / t .  (23) 

are possible. 

Let the porous medium have the following distribution of concentrations at the initial moment: 

n i ( 0 ,  x )  = n o i ,  a i (0, x) = 0 ,  (24) 

where n o i  = const, and on the boundary x -- 0 

o 0 (25) 
rt i ( t  , O) = n i , r/i = const. 

is simulated. 

The problems of existence, uniqueness, and single-valuedness of running wave solutions (22) of system 
(19) are studied similarly to [13, 14]. 
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For running wave solutions (22), boundary conditions (24) and (25) take the form 

( s )  
n i ( c o )  = ~ i  , 

u (oo) = u (s) , 

I') ai ( = )  = a = 0 ,  

(s+l) 
n i ( -  ~)  = n i , 

u ( -  ~o)  = u 0 + 1 )  , 

(s+l) 
ai ( -  oo) = '~i = (aiht ,  

dn i(+_ o o ) / d z = O ,  da i(+_ o o ) / d z = O ,  i =  1 ,  m ,  

(26) 

~s) (27) Z = X - - W  t ,  

where the values of n~ s) and n~ s+l) lie in the interval [no/, n o ] and w~ s) is the velocity of propagation of concentration 

waves for the i-th component. 

With (26) in view and using the variable z from (27), we obtain from (7) and (2): 

D i (u) ' ~  dni = un i -- u (s) nl s) -- w~ s) (n i -- nl s) + a i ) =  Li t  ( v ) ,  

_ w!S) dai  dz : O)li (eO -- at) ni -- ai 092i P = L2i (v) , 

( 2 8 )  

where vy = (ny, aj, u), j = 1, m. 
According to (26), the points v (s) and u (s+l) are zeros of the operators Li t  (v) and L2i(v) , i.e., 

Ll i  (v (s)) = Ll i  (v (s+l)) = L2i (v (s)) = L2i (v (s+l)) = 0 .  

For the running wave solution, the condition for existence of the integral curve connecting the points v (s) 

and v (s+l) can be found on the basis of considerations similar to those in [13, 14]. For the problem under  

consideration it has the form 

(s+l) u (s) ni R R (s) ai a} s) a i -- a i -- -- 
__ ( s + l )  > 1 > + __ n}S) _ n }S ) .  

n i n i - ~  nO n i n i 

2i (v(s+I)) > W~ s) > 2i (v(s)) ' 

u (s+l) ni R - R (s+l) 
- - +  

_ ( s + l )  
wl s) n o ni ni 

(29) 

(30) 

Similarly, it can be shown that 

is the condition for existence of a single curve connecting the points v (s) and V (s+l), and 

~'i-1 (v(s+I)) < Wl s) < ~i+1 (v(s)) " (31) 

is the condition for single-valuedness of the integral curve for monotonic functions fit, fik. 
When condition (31) is satisfied, running waves of concentration for various components, both in ni and 

in at, are behind or ahead of one another. 
Thus, conditions (29)-(31) ensure existence, single-valuedness, and uniqueness of solutions of the type of 

running waves of concentration. 

N O T A T I O N  

A, matrix of the coefficients in system (19); at, volume concentrations of particles clogging pores; Da~i, 

tensor of convective diffusion coefficients of particles; Di(u) ,  longitudinal convective diffusion coefficient; E, unit 
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matrix in (19); K(e), permeability coefficient; l, length of the model of the porous medium; no, hi, total and 
component concentrations of particles in the flow; nOt , n 0, initial and boundary values of concentrations of particles; 

p, pressure; t, time, u, physical velocity of liquid motion; v(t), filtration rate; w, velocity of concentration waves; 

x, coordinate; z, invariant variable; 6, positive constant in (8); e 0, e, initial and instantaneous porosities; ~1 = x / t ,  
self-similar variable;/~i, eigenvalues of the matrix A; COli , 692b parameters of intensities of sedimentation and escape 

of particles from pores. Subscript i refers to the i-th component of the mixture. 
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